excursion

UKAFH field trip to Doniford Bay, Somerset on 15th September 2019

Posted on

 

IMG_6769On 15th September 21 UKAFH members set out to explore the geology and fossils of Doniford Bay in Somerset.  Our group assembled at Doniford Farm Park with their kind permission, since the nearby public car park was closed at the start of the year. This allowed us to park and gather easily as well as providing a wonderful opportunity to purchase delicious lunches and a variety of local produce and wares as well as meeting the farm animals!

IMG_6770

In the glorious sunshine of a late September heatwave, we walked as a group to the nearby beach access and descended to the bay.  Sam set off to check the terrain and rock exposures on the beach and Aidan, the group leader for today’s event, provided some information to the group on the geology of the area and what the group might expect to find.  Directing our gaze to the distant cliffs in the direction of Watchet, Aidan explained that the red layers which were clearly visible displayed a history of interchanging desert and aquatic conditions, with water encroaching on the landmass then retreating to give way to desert conditions.  These varying states, occurring as Pangaea broke up and the Triassic period came to an end, finally gave way to full inundation by the ocean as the Jurassic period commenced.  The change in condition brought marine life to the area which leaves its record in the rocks beneath and around us in this location.

The rocks at Doniford Bay represent the very earliest part of the Jurassic period beginning 201 million years ago.  The most abundantly evident fossil is the ammonite Psiloceras planorbis, which is a zone fossil, which means it is recognised as being the defining biological marker for the start of the Hettangian stage 201.3 ± 0.2 million years ago, the earliest stage of the Jurassic period. All ammonites with the exception of the genus Psiloceras went extinct at the end of the Triassic so all Jurassic and Cretaceous ammonites are descendants of this genus.

Aidan continued to explain that the other ammonites we were likely to see demonstrate the evolution of this ammonite as it adapted and evolved to different niches of the newly opened up marine environment following the mass extincions of the end Triassic.  Firstly we will notice Caloceras johnstoni, which, like Psiloceras planorbis is always crushed flat but maintains aragonite (mother-of-pearl) shell preservation which often demonstrates spectacular rainbow iridescence but which evolved a ribbed shell which would have afforded advantages, possibly affecting buoyancy and swim control or resistance to predation or other damage.  This was succeeded by larger and more ribbed species like Arnioceras and Coroniceras which we hoped to see in situ in the wave-cut shale platforms.

The post-extinction sea quickly refilled with new life and Aidan informed the group that alongside the abundant ammonites we could also hope to find fishes, marine reptiles such as ichthyosaurs and plesiosaurs and plant remains.

We headed off as a group towards an area of loose rocks on the foreshore where we knew ammonites could be commonly found. Aidan pointed out some examples that were clearly visible and demonstrates how best to split the fragile shales, reminding group members to be safe using goggles and ensuring others were not close and vulnerable to flying chippings. He added that the delicate ammonites benefitted from preservation to bring out their colours and prevent deterioration and shared a tip that a smear of lemon juice was often effective in helping bring out the colour. Finally Aidan reminded members that they should only collect a few examples as no-one needs many identical specimens and there should be plenty left for others.

The group dispersed over the pebbly area and were quickly finding examples of Psiloceras and some Caloceras ammonites as well as some fragments of 3D ammonite. Chris Tait found a beautifully preserved example of Brachyphyllum, a cone- bearing plant which is known from the late Carboniferous to the Cretaceous.

IMG_6794
Brachyphyllum specimen found by Chris Tait

After the group searched the loose foreshore pebbles Aidan took the group to the ledges of shale along the beach where we could observe the later, larger ammonites like Arnioceras and Coroniceras. The site is SSSI so hammering if in-situ rocks is mot permitted and these specimens cannot be extracted but we were all able to view, photograph and enjoy the many beautiful examples visible on the rock surfaces.

We were fortunate to observe, on close inspection, a small fossilised fish exposed in the rocks and one lucky group member found a small ichthyosaur vertebra. Also visible were crinoid ossicles and sea urchin spines.

IMG_6818
Fish found by Aidan Philpott
IMG_6812
Small ichthyosaur vertebra found by Deborah

As we returned to the slipway to leave the beach accompanied by the sound of the steam train whistles there was still a surprise yet to come – a beautiful, unusually preferved brachiopod found by Jonah.

IMG_6823

UKAFH would like to thank Doniford Farm Park for allowing us to park for the duration of our excursion.  Your pasties and pies make delicious lunches and we wish we could have stayed for the delicious looking carvery!

We hope everyone had an enjoyable day at Doniford and we hope to see you all again on future field trips.

UKAFH field trip to Cross hands quarry, Warwickshire on 21st October 2018

Posted on Updated on

We were blessed with a warm sunny day on the 21st October to Cross Hands Quarry which is located on private land owned by Mr Newman. Mr Newman had kindly created a couple of fresh spoil heaps especially for our trip, so our party had fresh pickings as will be seen below lots of fossils were found.  As the trip is now centred around these spoil heaps, this location is perfect for families to visit. Therefore we had quite a few families on our trip. 

The quarry was once used to supply building stone for the local town of Chipping Norton, which is located in the Cotswolds famous for its rich honey coloured stone buildings.

Cross Hands Quarry is a Site of Special Scientific Interest (SSSI) for its geological features. The rocks exposed in the quarry faces are mostly limestones, formed from the remains of shelly creatures living in the warm tropical seas which covered large areas of England in the Middle Jurassic Period, about 175 million years ago.

GEOLOGY

Cross Hands Quarry exposes rocks of Middle Jurassic age that were deposited in a shallow marine environment, not too dissimilar to that of the modern-day Bahamas. These rocks belong to the Inferior Oolite and comprise the Clypeus Grit, overlain by the Chipping Norton Limestone and the Hook Norton Limestone.

Towards the end of Upper Lias times sea levels fell somewhat, bringing a change of conditions which initiated the Middle Jurassic. Low sea levels persisted for 15 million years and in clear, warm, shallow waters the most important sediment was calcium carbonate. The accumulations of carbonate mud and carbonate sand have been transformed into a variety of limestones which are grouped into two series called the Inferior Oolite and the Great Oolite.

The word Oolite refers to a rock containing a proportion of polite. These are little spheres of calcium carbonate, typically half to one millimetre in diameter. The name comes from the Greek word on – meaning egg – because a densely oolitic limestone has the appearance of fish eggs.

The Inferior Oolite group of formations is so called not because of any inferior quality but because it’s rocks are older than, and therefore stratigraphically below, those of the Great Oolite. This limestone makes excellent building material as has been used in the Cotswolds to give the buildings there distinctive golden yellow colour.

SSI Noticeboard showing Geology and typical fossils that can be found at location.

During the Inferior Oolite and Great Oolite times this area was low-lying between shallow sea to the south-west and a swampy, coastal region to the north-east. In these shallow, variable environments the deposition of sediment varied greatly in amount and type from place to place and time to time. As a result the strata exhibit rapid lateral changes in thickness and character and some beds may be restricted to small areas.

45120061_490760901421250_2825582074059030528_n
Geology Map of Whiltshire

In the early 1960’s remains of a partial right femur from a Cruxicheiros(meaning “cross hand”) is a genus of tetanuran theropod dinosaurwhich lived in the Middle Jurassic of England. The type species is C. newmanorum,described by Roger Benson and Jonathan Radley in 2010.  The 2010 paper recognized differences between the Cross Hands Quarry discovery and those attributed to Megalosaurus. These differences include lower and broader spines along the animal’s back, and differences in leg and hip bones. The authors renamed the Cross Hands Quarry specimens Cruxicheiros newmanorum; the generic name Cruxicheiros comes from a mixture of Latin and Greek, Latin crux meaning “cross” and Greek cheir meaning “hand,” in reference to the Cross Hands Quarry locality where the fossils were discovered. The specific name newmanorum honors the Newman family, who own the quarry. Cruxicheiroswas a large theropod, but the known material is very limited. The holotype, catalogued as WARMS G15770, is a partial right femur. Additional material from the site probably comes from the same individual as the holotype, based on examination of the matrix of sandy limestone and calcite which make up all the fossils. The additional material consists of “an anterior dorsal or posterior cervical vertebra; a dorsal neural arch; a partial dorsal vertebra; the anterior half of a middle-distal caudal vertebra; a partial right scapulocoracoid; a partial left ilium; the proximal end of a left pubis; [and] numerous rib and bone fragments”. The specimens are now stored at Warwickshire Museum Service (Source Wikipedia).

FINDS

Typical fossils found at this location are bivalves, brachiopods, gastropods, echinoids (such as Clypeus ploti).

img_2414
Nice big articulated bivalve – Pholadomya fidiculá
img_2416
Coral
img_2419-1
Lovely piece of Coral showing polyps
img_2422
Echinoid probably a Clypeus Ploti
45419847_296182637664238_1575509817965936640_n
Echinoid – possibly a Nucleolites sp
45306506_339484320145106_5566174643775078400_n
Gastropod- Bactroptyxis bacillus
45385962_2092226517756307_5977260506434502656_n
Gastropod – Purpuroidea morrisea

Many thanks to Mr Newman for allowing our party to visit his quarry.

UKAFH field trip to Ketton quarry, Rutland on 13th October 2018

Posted on Updated on

UKAFH were fortunate to gain access to this remarkable mile-wide working quarry on Saturday 13th October. A small group of us gathered on this unseasonably mild but breezy day for an excursion into the Middle Jurassic. We assembled in the site canteen for a briefing from UKAFH leader Sam Caethoven and the site management, taking time to enjoy the displays of some of the more exceptional finds to have been previously found at the quarry, before heading into the quarry itself.

Ketton Quarry is an enormous site which provides an extensive exposure of the middle Jurassic from rocks of Bathonian age (dating to around 165 million years ago) to Bajocian age (around 175 million years old). The mile-wide quarry has been worked for many decades and is now 115.6 hectares in size. With full access, this huge quarry provides opportunities to collect fossils from many different beds, however we were limited to an area of spoil where operations were not currently ongoing for safety and practical reasons. Despite this, fossils were still abundant.

The geology at Ketton is complex, with a range of Jurassic-aged rocks recorded. Mostly, three formations are visible in the quarries: the lowest is the oolitic Lincolnshire Limestone which was laid down in the middle Jurassic about 160 million years ago. This large, blocky, rock was formed from small grains of calcium carbonate which were deposited under a warm, shallow sub-tropical sea which was subject to reasonably strong currents. Above this is the Rutland Formation – bands of delta and shoreline muds and sands carried by rivers. Each band, with shelly remains at its base and tree roots at the top, was formed when sea-level rise topped the layer below. Many colours can be seen in fresh exposures of this formation. The exposures at the working quarry (Ketton Main Quarry) are the type formation for the Rutland Formation. Above the Rutland Formation is the Blisworth Limestone, laid down under quiet, shallow, warm conditions during a marine transgression. The Blisworth limestone is full of fossil corals and shells.

Ammonites can be found but bivalves, corals, brachiopods, gastropods, echinoids (such as Clypeus ploti), shark teeth and fish remains are more common. In the past, dinosaur footprints have been seen, along with fragments of their bones, but we were not that fortunate on this occasion.

Blocks of limestone are often full of bivalves, brachiopods, or corals but you need a good geological hammer and a chisel to extract them as they can be very solid, although some rocks will have weathered to the point that fossils can be easily picked out. There were also many loose fossils to collect.  Throughout our time on site we were able to find many bivalves and echinoids as well as a few brachiopods and gastropods.  Special mention goes to James who took the time to carefully search the fine matrial for quasi-microfossils and found numerous echinoid spines, fish teeth and an Acrodus sp. shark tooth.

At the end of our hunt we gathered in the canteen for refreshments and to enjoy seeing each thers’ finds.  It’s quite unusual on a UKAFH hunt for us all to finish together and have somewhere to gather for show-and-tell afterwards and it is always a highly enjoyable part of the day.  As well as seeing all the finds and learning more about the site, the quarry staff can also see what we have found, both to share in our enjoyment and to ensure that anything rare is reported and recorded.

UKAFH would like to thank Hanson Cement and the staff at Ketton quarry for allowing us to visit and taking care of us throughout the day, including briefing us, showing us the site and allowing us the use of their facilities.

img_2219

UKAFH field trip to Withington, Gloucestershire on Sunday 30th September 2018

Posted on Updated on

We were blessed with a warm, dry day for our first hunt at Withington in ploughed farm fields. The proximity of the topsoil to the Inferior Oolite below in this locality means that ploughing brings rock to the surface which contains a large variety of fossils. A field hunt really is an excellent way to find fossils with little effort other than to look patiently and “get your eye in”. The weather conditions were dry and overcast, making it an ideal day to fossil hunt as the rock was relatively clean and easy to spot so plenty of finds were made.

Once assembled at the farm, which we obtained special permission to visit, our guest leader and local expert for the day, Mark Baggott, gave us an introduction to the local geology and fossils. After enjoying Mark’s display and introduction to the site the group spread out to hunt across the two newly cleared fields and finds were quickly being made.  The lower field produced a good variety of abundant brachiopods, bivalves and regular echinoids and the upper field yielded complete and partial Clypeus ploti.  A number of members also found ammonites, which was unexpected as ammonite finds at this location have historically been quite uncommon.  Some beautiful gastropods were found and one lucky hunter even found a flint scraper!

img_1959
Mark Baggott’s fantastic display of Withington finds and geology and ID sheets

The Cotswold Escarpment rocks are almost exclusively marine and were deposited mainly in warm tropical seas. Plate tectonics has transported this part of the Earth’s crust northward over the last 150-200 million years to its current location. The Middle Jurassic rocks here are the characteristic ‘Cotswold Limestone’; soft, yellow, sandy limestone at the base of the Inferior Oolite (literally egg stone), a sedimentary rock formed from ooids, spherical grains composed of concentric layers. Towards the top of the Inferior Oolite the limestone becomes more fossiliferous and is referred to as ‘grits’ due to its coarser texture. Such an Inferior Oolite exposure is exposed at the farm and the fossils that this limestone contains date from between 167 to 175 million years ago at a time when this farm was at the bottom of a warm tropical sea. The rocks exposed near the farm comprise the Salperton and Aston Limestone and, from a fossil perspective, the most interesting layers are the Grits (Clypeus, Upper Trigonia Grit and Lower Trigonia Grit).

img_1987
Clypeus ploti found by Sam Caethoven

The commonest fossil found at this location is the sea urchin (echinoid) Clypeus ploti. These are more commonly known as Chedworth Buns (after the nearby village where they were often found) or Pound Stones, because their weight was usually a good approximation to 1lb. Clypeus lived in burrows on the seafloor, and burrowed their way through the sediment to get nutrients. They had fine hair-like spines and are an example of what is known as an “irregular” echinoid because they are shaped, not rounded.  Because these irregular echinoids lived in the sediment, they didn’t need the spiky and sometimes poisonous spines that the spiny sea urchins (known as regular echinoids) that we can see on the seafloor today have for protection. As well as the Clypeus Ploti we find other echinoid species which are “regular” and would have had sharp spines.  Unfortunately the spines rarely fossilize still attached, but they can frequently be found individually in the same sediment.

Trigonia bivalves gave their name to the second grit since they are very common at this horizon.  Trigonia are a family of saltwater clams, noticeable because the exterior of the shell is highly ornamented. Other fossils to be found comprise of brachiopods, bivalves and gastropods. Brachiopods are a marine animal that had hard valves (shells) on the upper and lower surfaces.  They are distinguished from bivalves which also have two valves/shells but in a left/right arrangement rather than upper and lower.

Brachiopods are bottom dwelling marine animals and, although rare today, in Jurassic times they dominated the sea floor and were frequently found in large colonies. One characteristic unique to brachiopods is the pedicle, which is a long, thin fleshy appendage which is used to burrow into the sea floor as an anchor while the brachiopod could feed clear of the silt.  Although the fleshy pedicle itself does not preserve in the fossils, the opening at the top of the animal from whence the pedicle connected (known as the foramen) is clearly visible. Brachiopods are filter feeders, gathering microscopic organisms and bits of organic matter from the water that flows by them using a specialized organ called a lophophore. This is a tube like structure with cilia (hair like projections). The cilia move food particles down the lophophore to the mouth.

Brachiopods are often known as lamp shells as the curved shell of the some classes look rather like Roman pottery lamps. There are two main groups of articulate brachiopods from the Jurassic, terebratulids and rhynchonellids. A common example of a telebratulid brachiopod found here is Stiphrothyris tumida; their main characteristics are their ovoid/circular shape, presence of a clear hinge line and a circular pedicle opening located in the beak. This brachiopod is a type example for lower Trigonia grit. The second of the main orders of articulate brachiopods is the rhynchonellids. The main characteristics are their strongly ribbed wedge shape, the absence of a clear hinge line, the line between the valves/shells is often zigzagged and a circular pedicle opening located in the beak. An example of such a brachiopod found here is Burmirhynchia sp.  The rhynchonellids were able to extrude their lophophore out of the shell in water, whereas the terebratulids maintained their lophophore within the shell.  The ability to extrude the lophophore led to more efficient food-gathering and is probably why rhynchonellids survived the mass extinction events better than the terebratulids.

Bivalves include such animals as clams, oysters, cockles, mussels, and scallops are also found at Withington. The majority are filter feeders and often they bury themselves in sediment where they can be safe from predators. Others lie on the sea floor or attach themselves to rocks or other hard surfaces, a few such as scallops are able to propel themselves through the water. The shell consists of two usually similar valves, and is joined at the hinge line by a flexible ligament with interlocking teeth on each valve. This arrangement allows the shell to be opened and closed for feeding without the two halves becoming disarticulated. Bivalves found here include Thracia (a member of the clam family) and Pleuromya (a member of the mussel family).

img_1971
Large ammonite found by Sarah Scott

If we compare brachiopods and bivalves, although they resemble bivalves, brachiopods are not even molluscs.  They are so unique that they have been placed in their own phylum, Brachiopoda. Brachiopods are shelled marine organisms that superficially resembled bivalves in that they are of similar size and have a hinged shell in two parts. However, brachiopods evolved from a very different ancestral line, and the resemblance to bivalves only arose because of a similar lifestyle. The differences between the two groups are due to their separate ancestral origins. Different initial structures have been adapted to solve the same problems, a case of convergent evolution. In modern times, brachiopods are not as common as bivalves. Brachiopod shells are often made of calcium phosphate as well as calcium carbonate, whereas bivalve shells are composed entirely of calcium carbonate.

Also to be found at Withington are gastropods. They are called univalves because they build a single coiled shell to protect their soft bodies. Ancient fossilized gastropods are related to living gastropods of today and are snails. Gastropods can be carnivorous or herbivorous. Their tongue is covered with thousands of tiny teeth to tear apart food.

UKAFH would like to sincerely thank the landowner for allowing us access to the fields.  Special thanks also to Mark Baggott for organising the visit and providing a fantastic display of local fossils and information for us all to refer to throughout the day.  Thank you also to Mark and to Alan Banyard for bringing along some very nice examples of undamaged and prepared Clypeus ploti and ammonites from nearby locations for members to take home.

Fossil Hunt at Monmouth, Dorset 25th June 2017

Posted on Updated on

On Sunday the 25th June, UKAFH attended a hunt at the ‘Mecca of palaeontology’; namely Lyme Regis in Dorset. Lyme Regis is where fossil collecting and palaeontology all began and where, in 1811, Joseph Anning, the older brother of Mary, dug up a skull of an ichthyosaur on the ledges on the beach. At the time, he thought it was a crocodile but the significant find was followed by Mary’s own discovery of the skeleton that accompanied the 4-foot long head and the rest is history, as they say! Mary Anning went on to become the world’s most famous fossil collector and the discoverer of ichthyosaurs, plesiosaurs, pterosaurs, fish and countless other fossils from this very location. She undoubtedly paved the way for this newly evolving science at the time.

IMG_2263
The hunt begins along Monmouth Beach.
IMG_2264
The ledges were revealed as the tide retreated.

Although nobody in the UKAFH party found anything as spectacular, the coastline at Lyme Regis certainly sets the scene for any fossil enthusiast. The constantly crumbling cliffs can reveal ammonites and other fossils on an almost daily basis. This, of course, has its drawbacks also because during the summer months, hundreds of thousands of people flock to the Jurassic Coast, especially to Lyme Regis and the neighbouring Charmouth, to chance their arm at finding a fossil. Consequently, with low erosion rates, particularly during the summer and with every man and his dog combing the beaches, it’s never an ideal time. Undaunted however, our party made the most of dry weather and great scenery.

IMG_2265
The party below Ware Cliffs on Monmouth Beach

As is usual, we began with a short explanation about the geology and what could be found there. To the west of the Cobb at Lyme Regis is Monmouth Beach and here the famous rocks of the Blue Lias Formation can be seen, extending west to Pinhay Bay. The distinctive cliffs of layered limestone and shale is present, particularly at Ware Cliffs. The rocks are the oldest in the sequence of rocks found along the Jurassic Coast and date from around 199 million years ago. These hard, pale layers of limestone and darker organic-rich shales, also occupy much of the foreshore around Lyme Regis, appearing as a series of ledges on the foreshore at low-tide. The rocks gently dip towards the east and the overlying Shales-with-Beef Member and the Black Ven Marl Member (both from the Charmouth Mudstone Formation) eventually reach beach level, beneath Black Ven and East Beach at Charmouth.

Looking for fossils in the cliffs at this location is both dangerous and pointless. The rocks are under constant attack by the sea and the fossils are washed out of the clays and shales and deposited on the foreshore, between the rocks and boulders on the beach and ledges. Searching in these places is far more productive and members of the party were encouraged to do just that and soon some finds were found. As explained, there is a low frequency of fossils during the peak season and specimens that were picked up were in no way spectacular but they, nonetheless, were representative of the myriad of life forms which were present in Jurassic seas; for this is where Lyme Regis was once located. Then, the current Dorset coast was enjoying a climate similar to the current coast of North Africa and the nearest land mass lie many miles away. Consequently, fossils are mostly of marine origin, despite them being from the time of the dinosaurs. Dinosaur remains and vegetation are rare as fossils at Lyme Regis and such fossils are invariably of those organisms that were swept into the sea, from the nearest land, only to sink into the muds and silts of the ocean floor. However, bones and teeth of marine reptiles, such as ichthyosaurs, plesiosaurs and pliosaurs are common finds but not during our hunt, alas!

IMG_2268
Our partY reach the start of Pinhay Bay, where our hunt ended.
IMG_2269
Part of the spectacular ‘ammonite pavement’ at Monmouth Beach.

As with most hunts at coastal locations, the best time is to coincide with a falling tide, which is exactly what we did. The walk along Monmouth Beach, traversing rocks and boulders, searching for fossils can be quite arduous and we soon reached the spectacular ‘ammonite pavement, very near to our destination at Pinhay Bay, just as the tide retreated fully. This incredible stretch of foreshore accommodates dozens, perhaps even hundreds of large ammonites among the boulders and in situ on the exposed bedrock. These particular ammonites cannot be collected but their enormous size and abundance makes them worth seeing all the same.

IMG_2270
Lizzie Hingley’s cracked nodule with a very crushed, calcified ammonite within.

IMG_2271

On the way, members of the party found a number of ammonite fragments and in the case of Rebecca Walsh, a complete ammonite. UKAFH Leader Lizzie Hingley found a nodule, which looked quite promising until it was expertly cracked open, to reveal a highly an ammonite badly preserved in calcite within! However, she did find a nicely preserved Gryphaea (an oyster) and a large bivalve from the slumped Upper Greensand boulders found nearer to Pinhay Bay. Serpulids (worms), belemnite fragments, gastropods and various bivalves were also found by the party, so despite the finds being unspectacular and few everyone thoroughly enjoyed a sunny (yes, the sun finally came out!) and informative day, on the stunning Jurassic Coast of Dorset. Many thanks to all who attended and made this a very enjoyable event.

Please note that the site is given SSSI status, as part of the Jurassic Coast World Heritage Site, so the cliffs themselves are not to be hammered into.

Steve Snowball