UKAFH field trip to Withington, near Cheltenham, Saturday 5th October 2019

Posted on Updated on

IMG_7309UKAFH hosted its largest field trip ever on Saturday 5th October when we welcomed 50 members, many of them new joiners, to privately owned ploughed farm fields near Withington which we had obtained permission from the landlord to visit. The proximity of the topsoil to the Inferior Oolite below in this locality means that ploughing brings rock to the surface which contains a large variety of fossils. A field hunt (with landlord permission) really is an excellent way to find fossils with little effort other than to look patiently and “get your eye in”. It is comparatively easy to find rocks on the surface of the topsoil and inspect them for fossils, many of which are already loose from the rock. No tools or equipment are required other than a container for your finds and, at this location, a bucket was ideal as fossils were plentiful and they are easy to carry and drop the robust fossils into as you go along.

The weather conditions were dry and overcast, making it an ideal day to fossil hunt as the rock was relatively clean and easy to spot so plenty of finds were made.

Once assembled at the farm, our guest leader and local expert for the day, Mark Baggott, gave us an introduction to the local geology and fossils. After enjoying Mark’s marvellous display of sample fossils and information sheets and his introduction to the site the group spread out to hunt across the two newly cleared fields and finds were quickly being made.  The lower field produced a good variety of abundant brachiopods, bivalves and regular echinoids and some gastropods, whereas the upper field yielded complete and partial Clypeus ploti as well as larger molluscs and a fragment of ammonite, which is unusual as ammonite finds at this location have historically been quite uncommon.  The changes in types of find was indicative of and helped demonstrate the stratigraphy of the area, with the upper field being at a higher elevation and therefore exposing younger rocks than the lower field and, therefore, younger and older fossils.

The Cotswold Escarpment rocks are almost exclusively marine and were deposited mainly in warm tropical seas. Plate tectonics has transported this part of the Earth’s crust northward over the last 150-200 million years to its current location. The Middle Jurassic rocks here are the characteristic ‘Cotswold Limestone’; soft, yellow, sandy limestone at the base of the Inferior Oolite (literally egg stone), a sedimentary rock formed from ooids, spherical grains composed of concentric layers. Towards the top of the Inferior Oolite the limestone becomes more fossiliferous and is referred to as ‘grits’ due to its coarser texture. Such an Inferior Oolite exposure is exposed at the farm and the fossils that this limestone contains date from between 167 to 175 million years ago at a time when this farm was at the bottom of a warm tropical sea. The rocks exposed near the farm comprise the Salperton and Aston Limestone and, from a fossil perspective, the most interesting layers are the Grits (Clypeus, Upper Trigonia Grit and Lower Trigonia Grit), named from the index fossils found in those rocks.

The commonest fossil found at this location is the sea urchin (echinoid) Clypeus ploti. These are more commonly known as Chedworth Buns (after the nearby village where they were often found) or Pound Stones, because their weight was usually a good approximation to 1lb. Clypeus lived in burrows on the seafloor, and burrowed their way through the sediment to get nutrients. They had fine hair-like spines and are an example of what is known as an “irregular” echinoid because they are shaped, not rounded.  Because these irregular echinoids lived in the sediment, they didn’t need the spiky and sometimes poisonous spines that the spiny sea urchins (known as regular echinoids) that we can see on the seafloor today have for protection. As well as the Clypeus Ploti we find other echinoid species which are “regular” and would have had sharp spines.  Unfortunately the spines rarely fossilize still attached, but they can frequently be found individually in the same sediment.

Trigonia bivalves gave their name to the second grit since they are very common at this horizon.  Trigonia are a family of saltwater clams, noticeable because the exterior of the shell is highly ornamented. Other fossils to be found comprise of brachiopods, bivalves and gastropods. Brachiopods are a marine animal that had hard valves (shells) on the upper and lower surfaces.  They are distinguished from bivalves which also have two valves/shells but in a left/right arrangement rather than upper and lower.

Brachiopods are bottom dwelling marine animals and, although rare today, in Jurassic times they dominated the sea floor and were frequently found in large colonies. One characteristic unique to brachiopods is the pedicle, which is a long, thin fleshy appendage which is used to burrow into the sea floor as an anchor while the brachiopod could feed clear of the silt.  Although the fleshy pedicle itself does not preserve in the fossils, the opening at the top of the animal from whence the pedicle connected (known as the foramen) is clearly visible. Brachiopods are filter feeders, gathering microscopic organisms and bits of organic matter from the water that flows by them using a specialized organ called a lophophore. This is a tube like structure with cilia (hair like projections). The cilia move food particles down the lophophore to the mouth.

Brachiopods are often known as lamp shells as the curved shell of the some classes look rather like Roman pottery lamps. There are two main groups of articulate brachiopods from the Jurassic, terebratulids and rhynchonellids. A common example of a telebratulid brachiopod found here is Stiphrothyris tumida; their main characteristics are their ovoid/circular shape, presence of a clear hinge line and a circular pedicle opening located in the beak. This brachiopod is a type example for lower Trigonia grit. The second of the main orders of articulate brachiopods is the rhynchonellids. The main characteristics are their strongly ribbed wedge shape, the absence of a clear hinge line, the line between the valves/shells is often zigzagged and a circular pedicle opening located in the beak. An example of such a brachiopod found here is Burmirhynchia sp.  The rhynchonellids were able to extrude their lophophore out of the shell in water, whereas the terebratulids maintained their lophophore within the shell.  The ability to extrude the lophophore led to more efficient food-gathering and is probably why rhynchonellids survived the mass extinction events better than the terebratulids.

Bivalves include such animals as clams, oysters, cockles, mussels, and scallops are also found at Withington. The majority are filter feeders and often they bury themselves in sediment where they can be safe from predators. Others lie on the sea floor or attach themselves to rocks or other hard surfaces, a few such as scallops are able to propel themselves through the water. The shell consists of two usually similar valves, and is joined at the hinge line by a flexible ligament with interlocking teeth on each valve. This arrangement allows the shell to be opened and closed for feeding without the two halves becoming disarticulated. Bivalves found here include Thracia (a member of the clam family) and Pleuromya (a member of the mussel family).

If we compare brachiopods and bivalves, although they resemble bivalves, brachiopods are not even molluscs.  They are so unique that they have been placed in their own phylum, Brachiopoda. Brachiopods are shelled marine organisms that superficially resembled bivalves in that they are of similar size and have a hinged shell in two parts. However, brachiopods evolved from a very different ancestral line, and the resemblance to bivalves only arose because of a similar lifestyle. The differences between the two groups are due to their separate ancestral origins. Different initial structures have been adapted to solve the same problems, a case of convergent evolution. In modern times, brachiopods are not as common as bivalves. Brachiopod shells are often made of calcium phosphate as well as calcium carbonate, whereas bivalve shells are composed entirely of calcium carbonate.

Also to be found at Withington are gastropods. They are called univalves because they build a single coiled shell to protect their soft bodies. Ancient fossilized gastropods are related to living gastropods of today and are snails. Gastropods can be carnivorous or herbivorous. Their tongue is covered with thousands of tiny teeth to tear apart food.

IMG_7326

A scarce partial ammonite found by Chloe

UKAFH would like to sincerely thank the landowner for allowing us access to the fields.  Special thanks also to Mark Baggott for organising the visit and providing a fantastic display of local fossils and information for us all to refer to throughout the day.  Thank you also to Mark and to Alan Banyard for bringing along some very nice examples of undamaged and prepared Clypeus ploti and ammonites from nearby locations for members to take home and to Andy Crawte and Alan Banyard who gave their time to assist our attendees in identifying their finds.

All in all we had a great day out and it was wonderful to welcome so many enthusiastic new members and see so many families enjoying what was for many of them their first fossil hunt. Everyone went away with finds and I saw many happy smiles! This is exactly what UKAFH is all about and I really hope we see many of you on future fossil hunts. Our 2020 hunt calendar has now been published so please take a look and I hope to see you all soon!

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.